Application of Exhaustive Iterative Search Algorithm for Solving Machining Optimization Problems
نویسندگان
چکیده
Optimization of machining parameters is a vital task for increasing machining efficiency and economics. Selection of optimal machining parameters is often performed by integrating empirical models with traditional mathematical and meta-heuristic algorithms. Ability to deal with complex and multi-dimensional optimization problems resulted in growing interest on the application of meta-heuristic algorithms for solving different machining optimization problems. The aim of this paper is to investigate the applicability of exhaustive iterative search algorithm for solving machining optimization problems which were solved by the past researchers using meta-heuristic algorithms. Three machining optimization case studies were considered, two for single objective and one for multi-objective optimization. The optimization solutions obtained by the past researchers using meta-heuristic algorithms and the optimization solutions obtained by exhaustive iterative search algorithm were compared and discussed.
منابع مشابه
Gravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs
Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...
متن کاملINTRODUCTION AND DEVELOPMENT OF SURROGATE MANAGEMENT FRAMEWORK FOR SOLVING OPTIMIZATION PROBLEMS
In this paper, we have outlined the surrogate management framework for optimization of expensive functions. An initial simple iterative method which we call the “Strawman” method illustrates how surrogates can be incorporated into optimization to stand in for the most expensive function. These ideas are made rigorous by incorporating them into the framework of pattern search methods. The SMF al...
متن کاملEFFICIENCY OF IMPROVED HARMONY SEARCH ALGORITHM FOR SOLVING ENGINEERING OPTIMIZATION PROBLEMS
Many optimization techniques have been proposed since the inception of engineering optimization in 1960s. Traditional mathematical modeling-based approaches are incompetent to solve the engineering optimization problems, as these problems have complex system that involves large number of design variables as well as equality or inequality constraints. In order to overcome the various difficultie...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کامل